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Abstract Many modern products (e. g., consumer electronics) consist of hundreds of complex
parts sourced from a large number of suppliers. In such a setting, finding the source of
certain properties, e. g., the source of defects in the final product, becomes increasingly
difficult. Data analysis methods can be used on information shared in modern supply
chains. However, some information may be confidential since they touch proprietary
production processes or trade secrets. Important principles of confidentiality are data
minimization and that each participant has control over how much information is
communicated with others, both of which makes data analysis more difficult.

In this work, we investigate the effectiveness of strategies for selective information
disclosure in order to perform cooperative data analysis in a supply chain. The goal is
to minimize information exchange by only exchanging information which is needed for
the analysis tasks at hand. The work is motivated by the growing demand for cross
company data analysis, while simultaneously addressing confidentiality concerns. As
an example, we apply a newly developed protocol with association mining techniques
in an empirical simulation study to compare its effectiveness with complete informa-
tion disclosure. The results show that the predictive performance is comparable while
the amount of exchanged information is reduced significantly.

Keywords Data mining; information sharing; supply chain; privacy

1. Introduction

Over recent decades, our capability to collect, store and analyze data has significantly
increased. Also, driven by recent discussions and developments, concerns regarding confi-
dentiality, privacy issues and misuse of the collected data are more prevalent than ever.
Enterprises are increasingly concerned about industrial espionage by potential competitors.
The research area of privacy preserving data mining [3] tries to address these issue by devel-
oping specialized algorithms. These algorithms ensure that the privacy of sensitive data is
preserved to a certain extend during data analysis. Most of these algorithms are developed
with the aim of protecting private information of individuals (income level, age, etc.) while
still enabling data analysis. In this paper, we deal with companies participating in a supply
chain [5]. These companies have very different information protection goals than individuals
and have an incentive to share certain information (e.g., logistics and demand forecast infor-
mation) with partners in the supply chain. However, we argue that even in this situation
some companies may prefer not to share all information (e. g., details about a proprietary
production process or the change of a third party supplier) or it might be impractical to
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share all information because of the shear volume (e. g., on what set of machines each items
was produced). Therefore, the type of information to be shared and the incentive struc-
ture in this setting has some characteristics which are different from the standard problems
addressed by privacy preserving data mining. In this paper, we will focus on the problem of
identifying correlated features in vertically partitioned data sets and analyze how informa-
tion can be selectively shared to achieve this goal in a cooperative fashion. We will discuss
considerations about the trade-off between limited information disclosure and the ability to
infer information about the root cause of certain problems based on examples in a supply
chain context. Furthermore, we will touch very briefly upon how to avoid problems due to
misaligned incentives.

The remainder of this paper is organized as follows: Section 2 reviews related work includ-
ing privacy in data mining and data analysis in supply chains. A formal problem description
of the scenarios investigated in this work is given in Section 3. Our new approach and
suggested selective information disclosure setups are introduced in Section 4. Results of an
empirical study of the approach is presented in Section 5. Section 6 describes considerations
about how to implement the approach in a supply chain and how issues due to incentive mis-
alignment can be addressed. Finally, Section 7 concludes the paper and addresses directions
for future work.

2. Related Work

Related work to the topic must be reviewed in two directions. On one hand, the development
of methods in the context of data mining and privacy must be discussed (Section 2.1), while,
on the other hand, data analysis in the special application field—supply chains—as a field
with a vivid history, has to be reviewed (Section 2.2).

2.1. Data Analysis and Privacy

After early ideas [8], seminal work introducing the idea to include privacy concerns in data
mining methods has been done around the turn of the millennium by Agrawal and Srikant [3]
and Lindell and Pinkas [19]. The former paper addresses the question of how to learn predic-
tive models without accessing the exact information in individual data records. For example,
decision trees can be learned from training data which is made imprecise using small changes
of the original values. The latter paper introduces a model involving two parties which own
confidential databases and need to perform a data mining task (decision tree learning with
ID3) on the combination of both databases, without exposing information unnecessarily to
the other party.

Early approaches of preserving privacy include microaggregation and k-anonymity.
Microaggregation [6] is a technique to control disclosure for statistical databases. Individual
records are aggregated into groups and then only these aggregated values are disclosed. To
guard individual information from exposure, aggregates need to be constructed from at least
k data points, where k is a constant controlling the level of protection. Closely related to
microaggrigation is the concept of k-anonymity [7]. k-anonymity uses attribute suppression
and generalization to ensures that each individual’s information in the dataset cannot be
distinguished from at least k−1 others and thus mitigating the tension between data utility
and respondent privacy.

The two mentioned approaches try to protect the privacy of individuals in data sets
published for statistical purposes. Work which comes closer to the scenario discussed in this
paper is privacy preserving data mining. Here several parties need to analyze their data sets
together without revealing confidential information unnecessarily to other parties. Various
privacy preserving algorithms for classification, data clustering and association mining have
been proposed during the last decade [28, 20, 1]. This covers methods to analyze vertically
or horizontally partitioned data sets. Recently, alternatives based on standard data mining
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methods instead of privacy preserving data mining methods have also been suggested. These
include methods based on local cluster identifiers to obfuscate information [25].

In this paper we focus on a classification task for vertically partitioned data sets in a
supply chain. However, in contrast to the above mentioned methods, which try to learn a
global model from partitioned data, we are interested in learning local models, one for each
involved participant in the supply chain, in a distributed manner. This not only reduces the
amount of data to be shared, but these local models can be directly used by each participant
to improve their processes and thus enhance the outcome of the supply chain as a whole.

2.2. Data Analysis in Supply Chains

Looking at the application domain for our analysis, there is a long history of research. In
the 1900s, the work by Lee and Whang [15] discusses the benefits and connected problems
of information sharing in the supply chain. Since then, the topic has not lost any of its
importance. The huge variety and types of shared information in the supply chain is dis-
cussed in [17], considering information sharing as a basic building block for implementing
tight coordination within the chain. Information typically shared includes information about
inventory, order status, sales, demand forecasts, and the production schedules. The value of
information sharing in supply chains has been broadly investigated [16, 13].

Li [18] finds that information sharing in a supply chain can be discouraged by certain direct
and indirect effects of competition. On the other hand, improved profits and social benefits
can facilitate information sharing. Further investigations of the barriers and performance
of e-Integration in supply chains, with emphasize on the benefits, can be found in [10, 9].
Subramani [26] and Yu et al. [29] discuss the benefits for the participants of supply chains.
The survey of Huang et al. [14] reviews over 100 publications which discuss the impacts of
sharing production information on the supply chain dynamics.

Zhou and Brenton [31] consider the practical application of information sharing by investi-
gating over 125 manufacturing companies in North America empirically. The study revealed
that effective information sharing significantly enhances supply chain practice and that effec-
tive information sharing and effective supply chain practice are critical for the supply chain
performance. In [12], software solutions for practical information sharing in supply chains
in the form of logistics information systems are discussed and compared. In particular,
hardware solutions like RFID are discussed in [4, 24].

Information sharing can be problematic in the face of horizontal competition between
supply chain participants [18]. For example, a participant might have an incentive (e.g.,
financial or loss of reputation) to hide the fact that their component causes a certain prob-
lem. The approach in this paper addresses this issue by introducing selective information
disclosure to protect information confidentiality and at the same time provides a mechanism
that reduces the possibility to hide problems.

3. Formal Problem Description

A supply chain can be formalized as a directed acyclic graph G= (V,E). The set of nodes V
symbolizes the participants of the supply chain and the set of edges E the material and
information flow. For simplicity, we consider here the scenario with a single final product
produced by a single manufacturer represented by the sink node s ∈ V with outdegree
zero, and that each supplier v ∈ V \ s supplies a single intermediate product which will
be part of the final product. A very simple supply chain with one manufacturer s and 12
suppliers v1, v2, . . . v12 is shown in Figure 1. In this example, v1 through v10 directly supply
the manufacturer s, and v11 and v12 only indirectly supply s via v2.

We assume that each final product is identified using a unique identifier k ∈K and that
all intermediate products, which are part of the final product, can also be identified with the
same identifier. The mapping between real product identifiers from different vendors is trivial
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Figure 1. Example of a generic supply chain as a graph.
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Table 1. Vertically partitioned data set T with class column c.

Tv1 Tv2 . . . Tv12

k t1,1 t1,2 . . . t1,m(v1) t2,1 . . . t2,m(v2) . . . t12,1 . . . t12,m(v12) c
1 m 1 s 3 . . . m 2 s 4 . . . e 4 . . . e 3 . . . m 6 pass
2 m 3 s 9 . . . m 2 s 1 . . . e 2 . . . e 7 . . . m 1 fail
...

...
...

...
...

...
...

...
...

...
...

...
...

|K| m 1 s 4 . . . m 1 s 3 . . . e 2 . . . e 3 . . . m 4 pass

Note. m . . .machine, s . . . supplier, e . . . employee.

and standard practice in supply chains. Each node v ∈ V also maintains an information table
Tv with m(v) columns and |K| rows. Each column denoted by tv,1, tv,2, . . . , tv,m(v) describes
a single feature of the product, e. g., the source of a component or the machine on which
a certain production step was performed. Each row represents one produced item and is
associated with a single product identifier k ∈K.

Each party, respectively each node in the graph, can assign certain class labels to each of
its produced items. These class labels can be assigned to describe certain properties of the
product. Examples are the results of system tests (pass/fail) or if a customer returned the
product as defective. Here we assume that only the manufacturer assigns a class vector c to
indicate if the product is defective.

The information about a final product is spread over all suppliers and therefore can be
thought of as being stored as a vertically partitioned distributed data set. The distributed
data sets can be joined together into the integrated virtual data set T by using the common
key data K for matching. The resulting data set

T = Tv1 ./ Tv2 ./ . . . ./ Tv|V | ./ c

represents the natural join of all columns (features) from all |V | suppliers and the class
vector c by matching the common key. Looking at this joint data set, all available data
concerning all products can be considered as one table, with the product items as lines and
the data of each node as a certain number of columns. Table 1 shows an example data set
for the supply chain in Figure 1 with one manufacturer s and 12 suppliers v1 through v12.
It contains data for |K| products and one classification vector c. Partitions are shown using
double lines.

Dependencies between c in a node v to the data Tu with u∈ V \v may exist, if and only if,
a path p(u, v) in G exists. Let us call the node u with a path p(u, v) in G an influential node
of v and denote the set of influential nodes for v by I(v), called influential set. For example,
in Figure 1 the influential set of v2 is I(v2) = {v11, v12}. This motivates the idea, that class
labels cv could be characterized by using all the data Tu of nodes u ∈ I(v). Assuming that
the integrated data set T is available, this is a simple task. However, if parties of the supply
chain are not interested in providing access to their internal data, then this analysis is not
possible. In order to perform analysis without the need to collect all information in a central
place, we developed the following protocol for selective information disclosure.
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4. Protocol for Optimized Information Disclosure

The main idea of our approach is to reverse the roles that the participants in the supply
chain typically play in analysis. Often the manufacturer s collects all information via the
supply chain and performs the analysis. Here we are interested in classification, and we will
show that it is possible to leave the detailed data with their owners (the suppliers) and
instead supply them with the class information. Now the analysis can be conducted in a
distributed manner by building and analyzing local models for each supplier, solving the
confidentiality problem for them. Next, we will introduce several different cases which we
call trivial case, direct case and remote case.

4.1. Trivial Case

In the trivial case, only a single party is involved (v = u) and all information is directly
available. Any available method can be used to discover the dependencies between the
columns in Tv and c. We do not discuss this case further.

4.2. Direct Case

In the direct case u∈ I(v) with (u, v)∈E. This restricts the analysis to only direct suppliers
with a path p(u, v) of length one. In order to discover the dependency at party u, party v
discloses a set of key-value pairs Γ = (k, c) from its classification to party u. Here the keys k
establish a set of products, or product IDs, for which the classification c is known and of
interest. Based on this information, party u selects the rows corresponding to the keys k in
Γ and adds the class attribute c as an additional column. Different models C can be used
to find dependencies. Examples are association rules, decision trees or statistical tests of
dependency. Below we describe different scenarios. Without loss of generality, we will assume
that the class attribute in the scenarios represents information of production failures.
Scenario 1: In scenario 1, v knows that a component supplied by u ∈ I(v) passes qual-
ity control, but still a fraction of the components produce problems in the final product.
v provides classification data in the form of Γ = (k, c) tuples to u. Party u infers a model
C to screen its products. If u identifies a problematic feature (e. g., a certain supplier for a
sub-component) then u can decide to only deliver items which most likely will not cause
faulty products to party v. This will decrease v’s failure rate and the associated cost. Party
u can also use the model to analyze and improve its production process (e. g., replace a
components supplier or readjust a machine).
Scenario 2: In scenario 2, v does not know what component from what supplier causes
the problem. Here v provides tuples Γ = (k, c) to all u∈ I(v). Each supplier locally creates a
model C. Then each supplier analyzes the model to see if its production process is associated
with the classification. If one supplier finds an association, then he can report this to v and
resolve the problem in the same way as in scenario 1.
Scenario 3: Scenario 3 is similar to scenario 2, but the problem is caused by the interac-
tion of several (often two) features from different unknown suppliers. The tuples are again
provided to all suppliers and each supplier checks for (potentially weak) associations. Since
both notify v, v can work with both suppliers to ensure that the components are matched
to avoid the interaction.

4.3. Remote Case

This case starts exactly the same as the direct case, but party v which received the tuples Γ
finds out that a feature which represents one of its own suppliers w is associated with the class
attribute c in Γ. In this situation, party u can ask party v, if the classification information
can be propagated further down the supply chain to its supplier w. The procedure at w is
exactly the same as in the direct case.
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Table 2. Parameters used for the simulation study.

Parameter Symbol Value

Number of suppliers |V | 10
Features per supplier m(v) [5,20]
Values per feature range(tv,i) [2,10]
Base defect rate ebase 1%
Feature defect rate efeature 100% or 5%
Number of shared tuples |Γ| 1,000 or 10,000
Number of simulation runs n 100

5. Simulation Study

In this paper, we conduct a simulation study to investigate the feasibility of selective infor-
mation disclosure. Both, the trivial case and the remote case can be seen as either a simple
special case or a recursive application of the direct case, respectively. Therefore, we con-
centrate on the three scenarios of the direct case in this study. The aim is to compare
the effectiveness of the selective information sharing approach with complete information
disclosure, i. e., all suppliers have to share all information with the manufacturer.

5.1. Modeling the Data

For the simulation study, we simulate a single manufacturer with |V | suppliers. Table 2
contains the parameters used in the simulation study. For each supplier v we randomly
choose the number of features m(vi) of the supplied component from the integer range [5,20].
Each feature can describe a distinct production step or a subcomponent. For each feature t
we randomly choose the number of different possible values from [2,10]. These values might
indicate, for example, the person performing a production step or the particular supplier
of a sub component. Each manufactured product has a chance of being defect governed by
the base defect rate of 1%. For the effected feature/value combination the defect rate is
increased to either 100% or 5% to signify that all products produced this way are defect or
the defect rate just increases from 1% to 5%. For the number of tuples shared, we consider
1,000 and 10,000 randomly chosen tuples. Tuples can also be selected in a different way
to balance the class labels or create any class distribution such that the supplier cannot
gain information about the actual distribution (i. e., what proportion of products by the
manufacturer are effected).

5.2. Method for Finding Significant Dependencies

Dependencies can be found by many different data mining or statistical methods (see, e. g.
[27]). In this study we focus on discrete features. For example, the same production step
can be done with three different machines resulting in a nominal feature with three different
values. Here we will use association rules to relate feature values with the class attribute using
the regular support/confidence framework [2]. However, to detect significant association
rules we will employ a one-sided Fisher’s exact test for the analysis of 2× 2 contingency
tables which was described for association rules in [11]. This test is similar to the χ2-test,
but is also appropriate for small sample sizes. We accept all associations with a p-value less
than a predefined significance level α as found causes of the defect. In the following we will
discuss how we correct for multiple comparisons and the impact of the number of shared
tuples |Γ|.
Correction for multiple comparisons Association rule mining is known to produce
a large number of rules which have to be tested. Performing many statistical test while
focusing on the strongest results of all tests is known to produce an increased false positive
rate. To maintain the desired significance level, we have to correct for multiple comparisons.
We will use Bonferroni correction [22] which divides the overall (familywise) significance
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level α∗ by the number of tests performed, i. e., α= α∗/m, where m is the number of tests.
Note that the number of tests is not the number of mined association rules and thus the tests
actually performed, but the number of all possible association rules. For the application in
this paper, it is sufficient to mine rules with a single antecedent (left-hand-side) item and
the item that indicated the important value of the class attribute (e. g., that the product
is affected by the problem) in the consequent (right-hand-side). Therefore, the number of
possible associations is the number of feature values and we divide α by that number. For
the simulations in this paper we use an overall significance level of α∗ = 5%.

Note that for correction there is a difference between complete disclosure, where the ana-
lyst has access to all the data, and selective disclosure, where each company has only access
to its own data and some class information. In the complete disclosure case, the number of
tests performed is equal to the total number of feature values used by all suppliers. For the
selective disclosure case, each company only knows about the number of feature values it uses
and thus only performs a number of tests equal to its own feature values. This results in two
issues for selective disclosure: (1) the effective comparison-wise significance level is corrected
less, and (2) the used significance level potentially varies between companies, depending on
the number of feature values each uses. We will investigate this influence in the simulation
results.
Number of shared tuples |Γ| The number of shared tuples represents the information
that the manufacturer exposes to other participants in the supply chain and reducing the
number of tuples exposes less information of the manufacturer. Since the tuples represent the
products which can be used for analysis, they define a sample of transactions for association
rule mining. Several authors have worked on establishing bounds for sampling strategies for
association rules. Mannila et al. [21] suggests the use of Chernov bounds on the number of
transactions containing a itemset in a sample. Zaki et al. [30] built upon the theoretic work
in [21] and show that there is a relationship between the support τ = supp(X) of itemset X
and the needed sample size n if we accept a relative error for the measured support of ε at
a given confidence level 1− c:

n=
−2ln(c)

τε2
. (1)

The sample size depends on each itemset’s support, however, the authors suggest to set
τ to the minimum support threshold used for mining associations. In this case the sample
size is large enough that the error rate ε holds at the given confidence level even for the
least frequent itemsets found and we get better estimates for more frequent itemsets.

For a minimum support of 1%, an accuracy level of 95% and a confidence level of 95%,
Equation (1) gives a sample size of approximately 240,000. However, the Chernov bound
is very loose and evaluation of sampling in practice showed that a size much smaller than
the one obtained by Equation (1) is typically sufficient [30]. We experimented with different
sample sizes (number of tuples |Γ|) in our simulation and choose to report results for 10,000
for a large sample size and 1,000 for a small sample size.

5.3. Results

We present the results for Scenarios 2 and 3 of the direct case and compare selective infor-
mation disclosure with complete information disclosure. We omit the results for Scenario 1
because this scenario is a simple special case of Scenario 2 with only a single supplier. All
simulations use the common parameters shown in Table 2. Figure 2 shows the distribution
of the number of different feature values in the simulation with an average of around 744
feature values.

In Scenarios 2 and 3, the manufacturer does not know what supplier is responsible for the
defect. For complete disclosure, all suppliers need to share their information about a set of
products defined by the manufacturer. For selective information disclosure, the manufacturer
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Figure 2. Distribution of the number of simu-
lated feature values for the 100 simulation runs.
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Figure 3. Amount of shared information for
complete and selective information disclosure
(logarithmic scale).
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shares the set of Γ = (k, c) tuples with all its direct suppliers. For comparison, we assume
that the products in Γ are also the products that the manufacturer collects information
about from the suppliers in the complete disclosure case. Figure 3 shows that while the
information exchange for selective disclosure is fixed at |Γ|× |V | (number of tuples times the
number of suppliers), the information exchanged for complete disclosure is several orders
of magnitude larger and results in the manufacturer having access to all the potentially
sensitive supplier data.
Scenario 2 In this scenario, a single feature value causes the defect. We find all association
rules with two items and then calculate for each the p-value for Fisher’s exact test. We
correct the significance level for the number of tests and report the antecedent (left-hand-
side) of significant rules as found feature values. Figure 4 show the results for 100 simulation
runs. The total defect rate is increased from 1% (the base defect rate) to on average 25.4%
or 1.7% when the introduced error for the effected feature value efeature is 100% or 5%,
respectively.

Figure 4(b) shows that the approach is able to find the problem feature value (true positive
rate) if it always results in a defective product (efeature = 1), or if the number of tuple is large
(|Γ| = 10,000). For a smaller number of tuples and a smaller introduced error, even with
complete disclosure only in 30% of the cases, we can identify the feature value causing the
defect. Interestingly, for selective disclosure the chance of identification increases to 34%.
The reason is that, in the selective disclosure, the correction for multiple comparisons is
weaker, resulting in more positives. There is very little difference between the two disclosure
forms in terms of ability to detect the source of the defect. On the other hand, Figure 4(c)
shows that the rate of false positives, i. e., feature values incorrectly identified as reasons for
the problem also increases for selective disclosure from about 0.02% to 0.35%. This number
reflects the chance that a feature value is incorrectly identified as the source of the problem.
It is much higher for selective disclosure since each supplier only corrects for its own multiple
comparisons.
Scenario 3 In this scenario the interaction between two features from different suppliers
causes the problem. Figure 5(a) shows the total error rate increases from 1% to 5% for
efeature = 1 and from 1% to 1.2% for efeature = .05. The defect rate is significantly smaller
than in Scenario 2 since a defect only occurs if the two affected feature values appear together
in a product.

Figure 5(b) shows that for efeature = 1, both selective and complete disclosure detect
almost always the problematic feature values, but for efeature = .05 detection of the source of
the defect is very difficult with less than 1% of detections for a small tuple size (|Γ|= 1,000)
and around 14% for a large tuple size (|Γ| = 10,000). Selective disclosure again provides
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Figure 4. Simulation results for Scenario 2
with a single problematic feature. Total defect
rates are shown in (a). Comparison of (b) cor-
rectly detected feature values and (c) incor-
rectly identified feature values between com-
plete disclosure and selective disclosure.
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Figure 5. Simulation results for Scenario 3
with two interacting features. The total defect
rate is shown in (a). Comparison of (b) correctly
detected feature values and (c) incorrectly iden-
tified feature values between complete disclo-
sure and selective disclosure.
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similar results with slightly higher detection rates due to the weaker correction for multiple
comparisons. Also, the rate of incorrectly identifying feature values is higher for selective
disclosure and reaches 0.35%, as shown in Figure 5(c).

6. Implementation Considerations

The free software package R for statistical computing has been used1 for the proof of con-
cept of the proposed method in this publication. To make the approach usable in a practical

1 http://www.r-project.org/, last accessed September 12, 2014

http://www.r-project.org/
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setting where several companies with different analytical capabilities and software environ-
ments are involved, we need to support information sharing and the analysis process. We
plan to implement the approach based on the plug-in mechanism in the open source data
mining framework RapidMiner2 which can be easily deployed to the supply chain partici-
pants. The participants make their information available to the locally running RapidMiner
instance, but are guaranteed that the information will only be used locally and not shared.
The locally running RapidMiner instances in each company will be securely connected to a
central coordination server where supply chains with an arbitrary numbers of participants
can be modeled and configured based on graph structures as shown in Figure 1. This coor-
dination server can be located at the manufacturer or at a trusted third party since it just
manages the communication, but never accesses any confidential data. Information exchange
(class information and an indication if a participant’s features are possibly associated) only
takes place directly between participants and only after the participants’ consent. An exam-
ple would be that the manufacturer provides some class labels indicating a rare hardware
failure and would like to address this problem with several suppliers. At this point the manu-
facturer consents to sharing the class information and articulates to the suppliers the reason
for the requested analysis. The suppliers need to manually consent to the analysis. After
their consent, the class information is securely transferred directly from the manufacturer
and the analysis is automatically performed. Detailed analysis results are available to each
supplier and an indication if significant associations were found is securely transmitted to
the manufacturer. Note, that once a party consents, the analysis is fully automatic and a
party cannot hide the results from the manufacturer. This is an important feature of the
process because it helps to mitigate the issue with the alignment of incentives [23] when
the analysis is carried out locally by the suppliers. It removes the option for not admitting
that a component is responsible for the problem and therefore reduces adverse effects on
the whole supply chain (e.g., reduced sales due to delays in fixing an issue).

7. Conclusion

In this paper we have explored how to support collaborative data analysis in a supply chain
while protecting confidential data through a mechanism of selective information exchange.
Instead of privacy preserving data mining algorithms, standard non-privacy preserving
approaches can be used with the proposed protocol. After introducing the protocol we dis-
cussed several scenarios and conducted a simulation study to show that selective information
disclosure can produce results comparable to complete disclosure. This motivates further
investigation of the approach. Especially interesting is to explore how other classification
models (e. g., decision trees) perform in this setting. Also, the amount of data being disclosed
can be potentially further reduced by employing strategies from progressive sampling where
we start with very little information and successively increase the amount disclosed till the
quality of the resulting models is sufficient.

It is planned to implement a supply chain package based on the plug-in mechanism of the
open source software RapidMiner to perform a case study in a real setting.
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