
DenGraph-HO: Density-based Hierarchical
Community Detection for Explorative Visual
Network Analysis

Nico Schlitter, Tanja Falkowski and Jörg Lässig

Abstract For the analysis of communities in social networks several data mining
techniques have been developed such as the DenGraph algorithm to study the dy-
namics of groups in graph structures. The here proposed DenGraph-HO algorithm
is an extension of the density-based graph clusterer DenGraph. It produces a cluster
hierarchy that can be used to implement a zooming operation for visual social net-
work analysis. The clusterings in the hierarchy fulfill the DenGraph-O paradigms
and can be efficiently computed. We apply DenGraph-HO on a data set obtained
from the music platform Last.fm and demonstrate its usability.

1 Introduction

DenGraph-HO was developed in order to fulfill the special needs of social network
analysts. In most cases, the visual inspection of a network is the first step of the
analytical process and helps to determine the basic graph characteristics and further
actions. DenGraph-HO supports this early stage by providing a quick visual analysis
of the network structure. It provides the ability of zooming into network clusterings
and has proven its usefulness for our practical work.

The zooming feature is based on a cluster hierarchy that is computed by applying
DenGraph-HO. Our approach differs from traditional hierarchical clustering meth-
ods in that DenGraph is a non partioning cluster algorithm. We consider the fact

Nico Schlitter
University of Applied Sciences Zittau/Görlitz, Group for Enterprise Application
Development, e-mail: NSchlitter@hs-zigr.de

Tanja Falkowski
University of Göttingen, Göttingen International, e-mail: Tanja.Falkowski@zvw.uni-goettingen.de

Jörg Lässig
University of Applied Sciences Zittau/Görlitz, Group for Enterprise Application
Development, e-mail: JLaessig@hs-zigr.de

Nico Schlitter, Tanja Falkowski and Jörg Lässig

that not all nodes are necessarily member of clusters. In addition, the proposed hi-
erarchy is not strictly build up by the classic divisive or agglomerative approach
that is known from literature. We generalize these methods and propose a top-down
and bottom-up approach by extending the hierarchy paradigms. The proposed hier-
archy supports superordinate clusters that contain subclusters and nodes which are
not assigned to clusters due to their distance.

Each level of the hierarchy represents a clustering that fulfills the DenGraph
paradigms which are described below. The levels, respectively the clusterings, differ
in the density that is required to form a cluster. While lower level clusterings aggre-
gate nodes with a lower similarity, higher level clusterings require a higher similarity
between nodes. The density-based cluster criteria are controlled by the parameters
η and ε which are iteratively applied for each level of the hierarchy. Thereby, an
existing clustering is used to compute the clustering of the next level. The efficiency
of our algorithm is based on this iterative sequence of cluster adaption instead of
recalculating each cluster.

The remainder of this paper is organized as follows. Section 2 introduces the orig-
inal DenGraph algorithm and its variations DenGraph-O and DenGraph-IO. Section
3 covers the proposed approaches of the DenGraph-HO algorithm. Its usability is
demonstrated in Section 4 by applying DenGraph-HO on a dataset obtained from
the online music platform Last.fm. Finally, a conclusion and an outlook are given in
Section 5.

2 Related Work

DenGraph [5] is a density-based graph clustering algorithm developed in 2007 for
community detection in social networks. It is inspired by DBSCAN [2], a well
known clustering algorithm for spatial data, and applies a similar local cluster crite-
rion. In the following, we briefly introduce the original DenGraph algorithm and its
variations DenGraph-O and DenGraph-IO.

2.1 DenGraph

Given a graph G = (V,E) consisting of a set of nodes V and a set of weighted,
undirect edges E, the DenGraph algorithm produces a clustering ζ = {C1, . . . ,Ck}
whereas each cluster Ci (i = 1 . . .k) consists of nodes VCi ⊆V . Since DenGraph is a
non-partitioning clustering algorithm there can be noise nodes VN = {u ∈V | u /∈Ci}
that are not part of the clustering ζ . The remaining non-noise nodes are either core
nodes or border nodes of a cluster. A node u ∈V is considered as core node if it has
an ε-neighborhood Nε(u) = {v ∈V | ∃(u,v) ∈ E ∧ dist(u,v)≤ ε} (where dist(u,v)
is the distance between u and v) of at least η neighbor nodes (|Nε(u)| ≥ η). Nodes

DenGraph-HO: Density-based Hierarchical Community Detection

which are in the ε-neighborhood of a core node but have not an own ε-neighborhood
are called border nodes.

The actual cluster criterion is based on the concepts directly density-reachable,
density-reachable and density-connected which are defined below according to [3]
and illustrated in Fig. 1.

Fig. 1 The concepts directly density reachability, density reachability and density connectedness
to determine whether nodes are density connected. (cf. [3])

Definition 1. Let u,v ∈ V be two nodes. u is directly density-reachable from v
within V with respect to ε and η if and only if v is a core node and u is in its
ε-neighborhood, i.e. u ∈ Nε(v).

Definition 2. Let u,v∈V be two nodes. u is density-reachable from v within V with
respect to ε and η if there is a chain of nodes p1, . . . , pn such that p1 = v, pn = u and
for each i = 2, . . . ,n it holds that pi is directly density-reachable from pi−1 within V
with respect to ε and η .

Definition 3. Let u,v ∈ V be two nodes. u is density-connected to v within V with
respect to ε and η if and only if there is a node m∈V such that u is density-reachable
from m and v is density-reachable from m.

In general, a set of core and border nodes VC forms a cluster C if each node u∈VC
is density-connected to each node v ∈VC.

The DenGraph algorithm itself is described in Alg. 1. It uses a stack in order to
process the graph nodes. In a first step, all nodes V are marked as noise. Afterwards,
each so far unprocessed node v is visited and checked if it has an ε-neighborhood.
If the neighborhood contains at least η nodes (|N(v)| ≥ η) v is marked as core and
a new cluster is founded. Each of v’s neighbors is marked as border, becomes a
member of the new cluster and is pushed on the stack. After handling all neighbors,
each node u from the stack is checked regarding having an ε-neighborhood and
marked correspondingly. If u became core node, all of it’s neighbors are marked as

Nico Schlitter, Tanja Falkowski and Jörg Lässig

border and pushed on the stack. This procedure is repeated until all nodes of the
graph are processed.

Algorithm 1: DenGraph (cf. [3])
input : Graph,η ,ε
output: ClusterModel

begin
foreach r ∈V do r.state=noise;
foreach (u ∈V |u.state = noise) do

if (|Nε (u)| ≥ η) then
Cluster=CreateNewCluster();
Cluster.addNode(u);
u.state=core;
foreach n ∈ Nε (u) do

Cluster.addNode(n);
n.state=border;
stack.push(n);

repeat
v=stack.pop();
if (|Nε (v)| ≥ η) then

v.state=core;
foreach n ∈ Nε (v)|n.state 6= core do

Cluster.addNode(n);
n.state=border;
stack.push(n);

until stack is empty;

return ClusterModel;

2.2 DenGraph-O

Practical work with DenGraph in the field of Social Network Analysis revealed
a minor drawback: While in real world applications nodes - respectively human
beings - might be part of more than one community, the DenGraph algorithm does
not allow for clusters to overlap. This issue was addressed in [6] and the extended
version DenGraph-O1 allows border nodes that are part of more than one cluster.

Figure 2(a) shows an exemplary graph visualization of the Enron dataset, which
encodes the communication frequency of Enron employees [8]. The graph was clus-
tered by applying the original DenGraph. Core nodes are blue, border nodes are
green and noise nodes are drawn in red color. An example for overlapping clusters
is illustrated in Fig. 2(b).

1 O stands for Overlapping

DenGraph-HO: Density-based Hierarchical Community Detection

(a) Clustered with DenGraph (b) Clustered with DenGraph-O

Fig. 2 Visualization of the Enron graphs clustered with DenGraph and DenGraph-O (cf. [3])

2.3 DenGraph-IO

Falkowski et al. propose [4, 6] to analyze the dynamics of communities over time
by comparing the changes between clusterings that are obtained in different time
points. For this, it is necessary to compute the graph clusterings that are observed
over time. A huge computational effort would be necessary if the original DenGraph
was used to process multiple consecutive snapshots of social networks. However, as
social structures often change slowly, the graphs Gt and Gt+1 differ just slightly.
Therefore, a total re-clustering, as the use of the original DenGraph would demand,
would be quite inefficient. The incremental cluster algorithm DenGraph-IO2 ad-
dresses this issue and updates an existing clustering based on the changes of the
underlaying graph. Since the DenGraph-IO algorithm deals exclusively with the
parts of the graph that changed from one point in time to the other, the computa-
tional complexity is dramatical reduced and even huge networks can be processed
in reasonable time.

3 DenGraph-HO

One challenge of the DenGraph algorithm is the choice of the parameters epsilon (ε)
and eta (η). Several heuristics have been developed, however, the ”right” parameter
combination mainly depends on the aim of the analysis. If the analyst is for example
interested in observing strongly connected nodes rather than in clusterings that show
the overall structure, the parameters need to be chosen accordingly. DenGraph-HO
addresses this issue and allows for a quick visual representation of the clustering for

2 IO stands for Incremental and Overlapping

Nico Schlitter, Tanja Falkowski and Jörg Lässig

a chosen parameter combination. The process of zooming in or out of the network
can be steered by the analyst.

The proposed algorithm returns a hierarchical clustering that describes the struc-
ture of the underlaying network. Thereby, the hierarchy provides multiple views
of the network structure in different levels of detail. Consequently, the cluster hi-
erarchy is an ideal basis for an efficient zooming implementation. Zooming-in is
done by stepping up in the hierarchy. It provides a more detailed view of the cur-
rent cluster by presenting its subclusters. A higher level of abstraction is reached
by zooming-out, which is equivalent to merging similar clusters into superordinate
clusters.

In principle, the hierarchy is a tree of clusters. Figure 3 shows an exemplary graph
clustering and the related cluster hierarchy. Since the root of the tree represents
the whole graph, children represent subclusters of its parent cluster. Following this
definition, the leaves of the tree correspond to the smallest clusters.

(a) Hierarchical Clusterings (b) Hierarchy

Fig. 3 Visualization of the Enron graph clustered with DenGraph-HO

Here, we are proposing a hierarchy that is based on the concepts of the DenGraph
algorithm. Each level of the tree (besides the root) represents a valid clustering that
fulfills the DenGraph-O paradigms. The hierarchy could be built by repeatedly ap-
plying DenGraph-O while using specific parameter settings for each level of the
tree. Thereby, the choice of the parameters η and ε is limited by constraints in order
to ensure that lower level clusters are subclusters of the parent cluster.

Let us assume that the clustering ζl forms level l of the hierarchy and is computed
by applying DenGraph-O with the parameters εl and ηl . Level l + 1 represents a
clustering that is based on εl+1 and ηl+1 and guarantees a higher similarity of nodes
in the cluster. According to the description above, ζl+1 has to contain subclusters
of clusters that are element of ζl . In order to preserve this parent-child relation we
have to ensure the following constraints:

1. The parameter εl that is used to generate the clustering ζl has to be bigger or
equal than εl+1 which is used to compute the clustering ζl+1:

DenGraph-HO: Density-based Hierarchical Community Detection

εl ≥ εl+1

2. The parameter ηl that is used to generate the clustering ζl has to be lower or
equal than ηl+1 which is used to compute the clustering ζl+1:

ηl ≤ ηl+1

Increasing ε might lead to a transition of a node state from noise or border to
core or from noise to border. By increasing ε a core node can not loose its state.
This explains why increasing ε might create a new or expand an existing cluster
and why it surely avoids cluster reductions or removals. The same argument holds
for decreasing η and shows why the demanded cluster-subcluster relation can be
guaranteed by the given constraints.

In the following, we discuss how the proposed cluster hierarchy can be efficiently
generated based on a list of parameter settings that fulfill the discussed constraints.
An obvious approach would be to perform multiple re-clusterings until each param-
eter setting is processed. However, this is very inefficient and would be a huge com-
putational effort because for a re-clustering the whole graph needs to be traversed
again.

The proposed DenGraph-HO algorithm addresses this issue and uses incremental
parameter changes to generate the cluster hierarchy. Instead of computing a com-
plete new clustering for each level, an existing clustering is used and adapted. In the
following, we discuss how an existing clustering of level l can be used to compute
the clusterings of level l + 1 and l− 1. We propose a bottom-up and top-down ap-
proach and analyze their efficiency depending on the graph structure. The input for
both approaches is a graph G = (V,E) and an existing clustering ζl =

{
Cl

1, . . . ,C
l
k

}
that fulfills the DenGraph paradigms.

3.1 Top-down Approach: Cluster Reduction, Split or Removal

The top-down approach performs a zoom-in operation and generates a new cluster-
ing for level l +1 of the hierarchy. Where in level l +1, nodes are clustered which
have a higher similarity than clusters in level l. Thereby, clusters of level l might
be reduced, split or removed. By decreasing ε and increasing η the state of nodes
within a cluster might change. A former border node might become noise (Cluster
Reduction). Former core nodes might get border state (possible Cluster Splitting) or
noise state (Cluster Reduction, possible Cluster Splitting or Removal).

Due to the DenGraph paradigms, it is guaranteed that noise nodes can not reach
border or core state by decreasing ε or increasing η . Thus, noise nodes will not
change their state and do not need to be processed.

Consequently, the top-down approach traverses just border and core nodes and
performs a reclustering for each existing cluster. For this purpose, we use a modified
DenGraph-O that is shown in Alg. 2. Each cluster C of level l is reclustered by ap-
plying the parameters of level l+1. Regarding the cluster hierarchy, if new clusters
emerge, they are subclusters of C.

Nico Schlitter, Tanja Falkowski and Jörg Lässig

Algorithm 2: TopDown
input : Graph,Clustering,ε ,η
output: Clustering

foreach (C ∈ ζ) do
foreach r ∈C do r.state=noise;
foreach (u ∈C|u.state = noise) do

if (|Nε (u)| ≥ η) then
Cluster=CreateNewCluster();
C.addCluster(Cluster);
Cluster.addNode(u);
u.state=core;
foreach n ∈ Nε (u) do

Cluster.addNode(n);
n.state=border;
stack.push(n);

repeat
v=stack.pop();
if (|Nε (v)| ≥ η) then

v.state=core;
foreach n ∈ Nε (v)|n.state 6= core do

Cluster.addNode(n);
n.state=border;
stack.push(n);

until stack is empty;

return Clustering;

3.2 Bottom-up Approach: Cluster Creation, Absorption and
Merging

Figuratively, the bottom-up approach performs a zoom-out operation and generates
a new clustering for level l − 1. Thereby, new clusters may be created, existing
clusters of ζl might absorb new members or get merged with other clusters.

As discussed above, by increasing ε and decreasing η , the state of a core node
remains unchanged. A former noise node may become core node (cluster creation)
or border node (absorption). A former border node could become core node (ab-
sorption). In case a former border node is member of multiple clusters (overlapping
clusters), its transition to core state leads to a merge of those clusters.

Since core nodes keep their state, there is no need to consider them in the bottom-
up approach. Consequently, the proposed procedure processes only noise and border
nodes in order to determine their new state and to adapt the clustering accordingly.
Following this argumentation, the procedure’s efficiency is based on the saved time
that the original DenGraph-O would have spent for processing core nodes.

Algorithm 3 describes the procedure that performs the bottom-up step by dealing
with the changes of η and ε . First, the algorithm iterates over all existing clusters in
order to expand them. Therefore it traverses all border nodes and updates their state
based on the number of nodes in the ε-neighborhood and η . In case a former border
node becomes core, this new core node is pushed on the stack for further processing.
After dealing with all border nodes, the procedure Cascade Expand checks if new

DenGraph-HO: Density-based Hierarchical Community Detection

core nodes absorb their neighbors into the cluster. In case an absorbed neighbor
has no own ε-neighborhood of cardinality η it becomes border node, otherwise it
becomes a core node. The newly discovered core nodes are pushed on the stack and
the procedure is repeated until no further nodes are absorbed into the cluster. Since
we allow for clusters to overlap, a new core node might have been a member of
multiple clusters before. Due to its new core state, the affected clusters are merged
into a superordinate cluster.

After dealing with all border nodes the existing clusters are maximal expanded
with respect to the changed η and ε . Now, the remaining noise nodes are processed
to check whether their state has changed. In case a former noise node becomes core,
a new cluster is created and the procedure Cascade Create absorbs the ε-neighbors
according to the DenGraph-O paradigms. If these neighbors become core nodes, this
cascade is repeated until no new ε-neighbors are found. During the handling of noise
nodes a newly created cluster will not merge with an existing one. If the new cluster
would be in ε-distance to an other cluster, the nodes of the new cluster would have
been already absorbed into the existing cluster during handling the border nodes.

Algorithm 3: BottomUp
input : Graph,Clustering,ε ,η
output: Clustering

foreach (C ∈ ζ) do
Cluster=CreateNewCluster();
Cluster.addSubCluster(C);
foreach (u ∈C|u.state = border) do

if (|Nε (u)| ≥ η) then
u.state=core;
stack.push(u);

Cascade Expand(stack,Cluster,ε ,η);

foreach (u ∈V |u.state = noise) do
if (|Nε (u)| ≥ η) then

Cluster=CreateNewCluster();
Cluster.addNode(u);
u.state=core;
stack.push(u);
Cascade Create(Cluster,ε ,η);

return Clustering;

Algorithm 4: Cascade Create
input : Graph,Cluster,ε ,η
output: Clustering

while Stack is not empty do
u=stack.pop();
foreach (n ∈ Nε (u)) do

if n.state=core then
if n /∈Cluster then

oldCluster=n.getCluster();
oldCluster.absorb(Cluster);
cluster=oldCluster;

continue;

Cluster.addNode(n);
if (|Nε (n)| ≥ η) then

n.state=core;
stack.push(n);

else
n.state=border;

return Clustering;

Nico Schlitter, Tanja Falkowski and Jörg Lässig

Algorithm 5: Cascade Expand
input : Graph,Clustering,Cluster,ε ,η
output: Clustering

while Stack is not empty do
u=stack.pop();
foreach (n ∈ Nε (u)|n.state ∈ {noise,border}) do

Cluster.addNode(n);
if (|Nε (n)| ≥ η) then

if n.state = noise then
n.state=core;
stack.push(n);

else
n.state=core;
//Cluster Merge
foreach (C ∈ ζ |n ∈C) do

Cluster.addSubCluster(C);
foreach (p ∈C|p.state = border) do

if (|Nε (p)| ≥ η) then
p.state=core;
stack.push(p);

else
p.state=border;

else n.state=border;

return Clustering;

3.3 Creating the Cluster Hierarchy for Explorative Visual Network
Analysis

Algorithm 6 describes how the top-down and bottom-up methods are used to gen-
erate the final cluster hierarchy. The list of parameter settings is generated by an
heuristic-based function and should reflect the demands of the network analyst. For
each parameter setting, the clusterings are computed by using either the bottom-up
or the top-down approach.

4 Application

Last.fm3 is a music community with over 20 million active users based in more than
200 countries. After a user signs up, a plugin is installed and all tracks a user listens
to are submitted to a database.

From the Last.fm Website we obtained the user listening behavior of 1,209 users
over an interval of 130 weeks (from March 2005 to May 2008). Last.fm provides

3 http://www.last.fm/

DenGraph-HO: Density-based Hierarchical Community Detection

Algorithm 6: CreateClusterHierarchy
input : Graph
output: Clustering

PS=CreateParameterSettingList();
Direction=DecideDirection();
if Direction=BottomUp then

ClusterHierarchy=DenGraph(Graph,PS[0].η ,PS[0].ε);
for i← 1 to (size(PS)−1) do

ClusterHierarchy=BottomUp(ClusterHierarchy,PS[i].η ,PS[i].ε);

else
ClusterModel=DenGraph(Graph,PS[size(PS)].η ,PS[size(PS)].ε);
for i← (size(PS)−1) to size(0) do

ClusterHierarchy=TopDown(ClusterHierarchy,PS[i].η ,PS[i].ε);

return Clustering;

for each user and interval (here one week) a list of the most frequently listened
artists and the number of times the artist was played. Based on this information
we determine user profiles for each interval and calculate the similarity of music
preferences between users. Based on these similarities, we generate a graph in which
the nodes represent the users and the edge weights code the distance between users
based on the similarity of their music listening behavior [7].

For our analysis we used a Last.fm graph consisting of 1,209 nodes and 12,612
edges. The graph has an average degree of 20.8 and a density of 0.017. We applied
DenGraph-HO and obtained the cluster hierarchy shown in Figure 4. The calculated
cluster labels are based on the profiles of the users in the same cluster. Table 1 gives
more details about the clustering of each hierarchy level. Shown are the parameters
ε and η , the cluster label and the number of nodes in each cluster.

Fig. 4 DenGraph-HO: Hierarchy

The plausibility of the relation between a cluster and its subclusters is demon-
strated by the (indie, rock, alternative, punk)-cluster that is divided in the clusters
(punk, rock, indie), (punk, rock) and (indie, rock, alternative). Obviously, music gen-

Nico Schlitter, Tanja Falkowski and Jörg Lässig

Table 1 Overview about the cluster hierarchy

Level ε η Cluster Labels # Nodes
0 - - Entire Graph 1209
1 0.05 22 hip-hop 35

indie, rock, alternative, punk 631
death metal, metal, heavy metal 85

2 0.037 24 hip-hop 31
punk, rock, indie 86
punk, rock 33
indie, rock, alternative 316
death metal, metal, heavy metal 37

3 0.025 26 indie, indie rock, rock 120

res that are similar but separated in level 2 of the hierarchy are merged into one
cluster in level 1.

The number of nodes per cluster increases, when going from a leave to the root of
the cluster hierarchy. Due to the parameter setting of ε and η the clusters grow either
through cluster merging or absorption of new nodes. These properties of DenGraph-
HO and the efficient calculation of the cluster hierarchy are the base for the proposed
zooming purpose.

Fig. 5 DenGraph-HO: Graph and Clustering

Figure 5 shows the entire graph and the clusters produced by DenGraph-HO. For
the sake of clarity edges are not drawn. Since we limited the number of hierarchy
levels in our example and due to the small number of nodes, the graph can be easily
understood. However, graphs with millions of nodes and a hierarchy depth greater
than ten ask for appropriate tools.

The ability of zooming through the graph enriches our tool set and is an important
step for studying the graph structure. Figure 6 shows the three zooming steps that
are provided by DenGraph-HO for the given example. Each level of the hierarchy is
shown as a single clustering.

DenGraph-HO: Density-based Hierarchical Community Detection

(a) Level 1

(b) Level 2

(c) Level 3

Fig. 6 Zoom-in Operation

Nico Schlitter, Tanja Falkowski and Jörg Lässig

5 Conclusion

In this paper we proposed the hierarchical density-based graph clustering algorithm
DenGraph-HO. We demonstrated its practical use for explorative visual network
analysis by applying the algorithm to a social network that we have obtained from
the Last.fm music platform. The resulting clusters form groups of users that have
similar music listening preferences. By calculating labels the clusters get a semantic
meaning based on the music preferences of its members. The produced cluster hi-
erarchy and clustered graph have shown that clusters with similar labels are located
closely in the graph and the in hierarchy.

Since DenGraph-HO has proven its usefulness for our practical work, our next
step is to integrate the incremental approach known from DenGraph-IO in a hierar-
chical incremental density-based graph clusterer DenGraph-HIO in order to analyze
clusters over time.

Acknowledgements This work was supported by the members of the distributedDataMining
BOINC [1] project (http://www.distributedDataMining.org).

References

1. Anderson, D.P.: Boinc: A system for public-resource computing and storage. In: Proceedings
of the 5th IEEE/ACM International Workshop on Grid Computing, GRID ’04, pp. 4–10. IEEE
Computer Society, Washington, DC, USA (2004)

2. Ester, M., Kriegel, H.P., Sander, J., Wimmer, M., Xu, X.: Incremental clustering for mining
in a data warehousing environment. In: A. Gupta, O. Shmueli, J. Widom (eds.) VLDB’98,
Proceedings of 24rd International Conference on Very Large Data Bases, August 24-27, 1998,
New York City, New York, USA, pp. 323–333. Morgan Kaufmann (1998)

3. Falkowski, T.: Community Analysis in Dynamic Social Networks. Sierke Verlag, Gttingen
(2009)

4. Falkowski, T., Barth, A.: Density-based temporal graph clustering for subgroup detection in
social networks. Presented at Conference on Applications of Social Network Analysis (2007)

5. Falkowski, T., Barth, A., Spiliopoulou, M.: Dengraph: A density-based community detection
algorithm. In: Proc. of the 2007 IEEE / WIC / ACM International Conference on Web Intelli-
gence, pp. 112–115. IEEE Computer Society, Washington, DC, USA (2007)

6. Falkowski, T., Barth, A., Spiliopoulou, M.: Studying community dynamics with an incremental
graph mining algorithm. In: Proc. of the 14 th Americas Conference on Information Systems
(AMCIS 2008). Toronto, Canada (2008)

7. Schlitter, N., Falkowski, T.: Mining the dynamics of music preferences from a social networking
site. In: Proceedings of the 2009 International Conference on Advances in Social Network
Analysis and Mining, pp. 243–248. IEEE Computer Society, Washington, DC, USA (2009)

8. Shetty, J., Adibi, J.: Enron email dataset. Tech. rep. (2004). URL
http://www.isi.edu/adibi/Enron/Enron.htm

