

Networked XML Topic Maps (NXTM)

A project for extracting structured data from unstructured data.

Jörg Lässig, Adam Bartusiak, Florian Haje

University of Applied Sciences Zittau/Görlitz, Department of Computer Science, Görlitz, Germany

Introduction

- o common information overload is a significant problem nowadays
- o in the IT universe 80-90% of digital data is unstructured
- ounstructued data is rather intended for human consumption only:
- -it has no pre-defined data model
- —it is not organised in a pre-defined manner
- the usage of existing data search tools for unstructured data is limited:
- it is difficult to discover, collect and extract valuable information

Goals

- extraction of structured data from unstructured data from multiple resources:
- -emails and text messages
- -MS Office and PDF documents
- -XML and HTML files
- o dynamic recognition and representation of linked information in documents
- oflexible and intuitive graphical user interface enabling easy access to the analyzed data

Implementation

Data input interface

- pipeline of documents to be analysed, updated or removed from the system
- o providing data from many different sources

NLP analysis

- 1. import of documents to be analysed from the input pipeline
- 2. language identification, MIME-Type and metadata analysis
- 3. natural language processing in chained analysis engines and annotating semantic information
- 4. similarity calculation and document clustring
- 5. storing the documents and extracted data in a database, updating the search index
- 6. mapping annotated entities and their attributes with LOD knowledge databases

NXTM Data and Text Analysis Engine Metadata Analysis Text Extraction Segmentation Morphology Analysis Semantic Analysis Similarity Analysis Similarity Analysis Linked Open Data Knowledge Integrator Data Persistence Layer

Clustering

- during the data analysis the documents are additionally clustered according to their simliarity
- o in a hierarchical cluster it is possible to quickly find the most simliar document to the searched phrase
- o similiarity measure is used to calulate distances between nodes in the result graph, reflecting the relevance between documents

LOD Integration

- o extracted semantic information (i.e. entites, their attributes and relationships) may build a local knowledge graph
- by using web interfaces such a graph can be enhanced through integration with existing online knowledge databases and ontologies (Linked Open Data)

GUI Representation

Representation Layer

- o search results are represented as an interactive graph with nodes and edges
- a network of related documents, entities and metadata
- real time browsing of the graph enables the user to discover other relevant sources of information and their dependencies
- available as a standalone frontend as well as a plugin for other information management platforms

Semantic Search

- o direct queries to a DB for retrieving the analysed data is an inefficient way of searching information:
- -user is unaware of the ontology of the persisted data
- requires knowledge of a query language (SQL, SPARQL)
- o a semantic search machine can effectively search for linked and hierarchical data, regardless to the data schema used

NXTM Search Layer Semantic Search Machine Search query... SIREN Data Presistence Layer NXTM Representation Layer Standalone Frontend Type: Person Name: John Smith Author of: XYZ Plugins & Apps s > SharePoint **Document** Title: XYZ Connections Updated: 03.01.2003 Abstract Office 365 Lorem ipsum dolor sadipscing elitr, Data-Driven Documents eirmod temport...

Partners/Cooperations

